
JTRS HF ALE MAC API Service Definition

V1.0
December 15, 2000

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium

Under Contract No. DAAB15-00-3-0001

JTRS HF ALE MAC API
ver. 1.0

Revision Summary
1.0 Initial release

JTRS HF ALE MAC API
ver. 1.0

i

Table of Contents

1 INTRODUCTION... 1

1.1 OVERVIEW . .. 1
1.2 SERVICE LAYER DESCRIPTION. .. 1
1.3 MODES OF SERVICE.. 2
1.4 SERVICE STATES. ... 2
1.5 REFERENCED DOCUMENTS... 2

2 UUID... 3

3 SERVICES... 4

3.1 ESTABLISH CONNECTION. .. 4
3.2 TRANSMIT AND RECEIVE SAMPLES. ... 7

4 SERVICE PRIMITIVES.. 8

4.1 CONNECTIONCOMMANDS... 8
4.1.1 connectionReq... 8
4.1.2 initiateTransmit. .. 9
4.1.3 terminateTransmit. .. 9
4.1.4 disconnectReq. .. 10

4.2 CONNECTIONSIGNALS. ... 11
4.2.1 connection Confirm. .. 11
4.2.2 connectionInd.. 12
4.2.3 disconnectInd. ... 13

4.3 CONNECTION ESTABLISHED : TRANSMIT AND RECEIVE SAMPLES...................................... 13
4.4 MACPUSHPACKET. ... 14

4.4.1 spaceAvailable. ... 14
4.4.2 enableFlowControlSignals. ... 15
4.4.3 enableEmptySignal.. 16
4.4.4 setNumOfPriorityQueues.. 16
4.4.5 getMaxPayLoadSize.. 17
4.4.6 getMinPayLoadSize. ... 17
4.4.7 pushPacket... 18

4.5 SIGNALS BB... 19
4.5.1 signalHighWatermark. .. 19
4.5.2 signalLowWatermark.. 19
4.5.3 signal Empty.. 20

4.6 COMMON STRUCTURES .. 20
4.6.1 Stream Control Structure... 20

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES. .. 22

6 PRECEDENCE OF SERVICE PRIMITIVES... 30

7 SERVICE USER GUIDELINES. .. 30

JTRS HF ALE MAC API
ver. 1.0

ii

8 SERVICE PROVIDER-SPECIFIC INFORMATION.. 30

9 IDL.. 30

9.1 IDL FOR ALE CONFIGURE... 30
9.2 IDL FOR ALE OPERATIONS. ... 33
9.3 IDL FOR ALE RESPONSES... 35
9.4 IDL FOR CONNECTION... 38
9.5 IDL FOR HF PACKET... 39
9.6 IDL FOR HF API. .. 40

10 UML. .. 42

List of Figures
Figure 1. API Scope ... 1
Figure 2. Sequence Diagram for Service User Local Initiated Connection................................... 6
Figure 3. Incoming Connection Sequence Diagram.. 7
Figure 4. connectionCommands... 8
Figure 5. Connection Signals ... 11
Figure 6. Packet BB... 14
Figure 7. Signal BB.. 19
Figure 8. Stream Control.. 21
Figure 9. Stream Control Sequence Diagram... 21

List of Tables
Table 1. Cross-Reference of Services and Primitives.. 4
Table 2. High Water and Low Water and Empty On... 22
Table 3. High Water and Low Water Off and Empty On.. 25
Table 4. High Water and Low Water and Empty Off.. 27

JTRS HF ALE MAC API
ver. 1.0

1

1 INTRODUCTION.

1.1 OVERVIEW.

Automatic Link Establishment (ALE) is a means of automatically establishing a radio link
between two or more HF stations. Radios using ALE still operate in the HF band and all
characteristics of HF signal propagation still apply.

There are two major differences between conventional HF and ALE HF. Unlike conventional
HF communication, ALE allows selective calling to other similarly equipped HF stations. ALE
also automatically chooses the best available frequency from a preprogrammed list of
frequencies to make the call. All that needs to be known is the address (ALE call sign) of other
ALE stations with which communication is desired.

Establishing ALE communication is similar to placing calls using a telephone. An operator
chooses a station address and starts the call. The ALE system automatically sets up a two-way
communication link. Once a link is established, the HF ALE system operates the same as a
conventional HF system.

In Figure 1 below, the "WF Specific Resource" may be one of many waveforms (e.g. 188-141,
STANAG 5066, analog voice, etc.) but the same interface is provided at the MAC layer for all
waveforms.

MAC Real-Time APIWF Specific
Resource

Mac
Resource

Physical
Resource

HMI and data
load

IO
ResourceExternal Modem

Up stream

Down Stream

Figure 1. API Scope

1.2 SERVICE LAYER DESCRIPTION.

The HF ALE MAC Real-time API Service user is the waveform-specific resource which
provides modulated digital samples to the HF ALE MAC Real-time API Service Provider. The
Frequency tables are loaded through HF ALE MAC Non-Real-time Service Definition.

JTRS HF ALE MAC API
ver. 1.0

2

1.3 MODES OF SERVICE.

There are no specific Modes of Service.

1.4 SERVICE STATES.

Current
State

Logical Event Condition Action Next State

Service User
invokes
connectionReq

Service Provider
attempts to establish
an ALE connection

Waiting for
connection
Confirm

No
Connection

Service Provider
invokes
connectionInd

Service User provides
the logical
connections to
waveforms

Connection
Established/
Receiving

ALE
connection
established

Service User provides
the logical
connections to
waveforms

Connection
Established/
Receiving

Waiting for
connection
Confirm

Service Provider
invokes
connectionInd

ALE
connection
failed

No Connection

Service User
invokes
disconnectReq

Service User notifies
waveforms of the lost
connection.

Waiting for
disconnection
confirm

Service Provider
invokes
disConnectInd

Service User notifies
waveforms of the lost
connection

No Connection

Connection
Established/R
eceiving

Service User
invokes
initiateTransmit

Service Provider
starts to transmit the
carrier.

Connection
Established/
Transmitting

Connection
Established/
Transmitting

Service User
invokes
terminateTransmit

Service provider
stops the
transmission.

Connection
Established/
Receiving

Waiting for
disconnection
confirm

Service Provider
invokes
disConnectInd

Service User notifies
waveforms of the lost
connection.

Service
Provider
invokes
disConnectInd

1.5 REFERENCED DOCUMENTS.

Document No. Document Title

MSRC-5000SCA Software Communications Architecture Specification

MSRC-5000API Application Program Interface Supplement to the Software
Communications Architecture Specification, Appendix C Generic Packet
Building Block Service Definition

JTRS HF ALE MAC API
ver. 1.0

3

2 UUID.

The UUID for this API is 7cd5b880-d1d3-11d4-8cc8-00104b23b8a2.

JTRS HF ALE MAC API
ver. 1.0

4

3 SERVICES.

Refer to Table 1 for a cross-referenced listing of services and their primitives or attributes.

Table 1. Cross-Reference of Services and Primitives

Service Group Service Primitives or Structure Attributes

connection
commands

connectionReq(mode : ModeTypes) : void

initiateTransmit() :void

terminateTransmit() : void

disconnectReq() : void

Establish
Connection

connection Signals connectionConfirm(connectionIds :
connectionsIdType, status : boolean,
dataRate : short) : void

connectionInd(connectionIds :
connectionsIdType, dataRate : short) : void

DisconnectInd() : void

pushPacket down
stream to transmit

pushPacket(priority : octet, control : in
HfControlType, payload : in PayloadType)
: void

Connection
Established
:Transmit and
Receive samples

pushPacket up
stream for receive

pushPacket(priority : octet, control : in
HfControlType, payload : in PayloadType)
: void

HfControlType Id
StreamControl

3.1 ESTABLISH CONNECTION.

Establish Connection provides a service that allows the establishment, maintenance, and
disconnection of an ALE connection. Figure 2 provides a sequence of events that occur to
establish a HF ALE connection while Figure 3 provides a sequence of events to process a
incoming connection request. The following steps are illustrated in figure 2.

JTRS HF ALE MAC API
ver. 1.0

5

1. The Service User initiates a connectionReq(mode: ModeType). The "mode" field specifies
whether the connection will be a data connect or a voice connection. This is an
asynchronous event: meaning the Service Provider will notify the Service User at some
future time the result of that request. The Service User will be notified via the
connectionConfirm signal.

2. The Service Provider signals the Service User the result of the connectionReq via
connectionConfirm (connectionIds, status, dataRate). The "connectionIds" field provides an
array of connection IDs. When a HF ALE connection is established, more that one channel
may be available on this connection. A connection ID is assigned to each channel on
completion of physical connection. The "status" field specifics the result of the
connectionReq (e.g connectionPassed or connectionFailed). The dataRate field indicates the
data rate for each of the channels.

3. When the Service User has data to send, the initiateTransmit is invoked to initiate the
carrier.

4. Service User pushes packets downstream to the Service Provider to transmit. The "priority"
field of a queue is associated with a channel. The "control" identifies the channel ID and
identifies the beginning of stream. The "payload" field contains an array of 16-bit samples.

5. Service User pushes another packet downstream to the Service Provider to transmit. The
"control" identifies the channel ID and identifies the end of stream.

6. When the transmission is complete and the Service User has no more data streams to
transmit, terminateTransmit is invoked. The Service Provider ends the transmission but the
connection is maintained by the Service Provider.

7. The Service Provider receives data and passes the samples to the Service User via
pushPacket. An asynchronous reception can occur at anytime while the connection is open.
pushPacket upstream has the same parameters as pushPacket downstream.

8. The Service User invokes the disconnectReq to close the HF ALE Connection.
9. The Service Provider signals the Service User that the connection has been disconnected.

The Service User can receive a unsolicited disconnectInd when there is a failure in the
communication path. The Service User must repeat steps 1 & 2 to receive or transmit again.

JTRS HF ALE MAC API
ver. 1.0

6

Figure 2. Sequence Diagram for Service User Local Initiated Connection

The following steps, for incoming connection, are illustrated in figure 3.

A. Service Provider signals the Service User of a HF ALE connection from a peer via
connectionInd(connectionIds,dataRate). The "connectionIds" field provides an array of
connection IDs. When a HLE Ale connection is established, more that one channel may be
available on this connection. A connection ID is assigned to each channel on physical
connection. The dataRate field indicates the data rate for each of the channels.

B. Service Provider pushes received samples upstream to the Service Provider. The "priority"
field of a queue is associated with a channel. The "control" identifies the channel ID and
identifies the beginning of stream. The "payload" field contains an array of 16-bit samples.

C. When the Service User has data to send, the initiateTransmit is invoked to initiate the
carrier.

D. Service User pushes samples downstream to the Service Provider. The "priority" field of a
queue is associated with a channel. The "control" identifies the channel ID and identifies

 : provider : user

1: connectionReq(mode : ModeTypes)

2: connectionConfirm(connectionIds : connectionsIdType, status : boolean, dataRate : short)

3: initiateTransmit()

4: pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType)

5: pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType)

6: terminateTransmit()

Multiple transmits and/or receives
may be performed during each
connection

7: pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType)

8: disconnectReq()

9: DisconnectInd()

disconnectInd may occur
without a disconnectReq
being generated.

JTRS HF ALE MAC API
ver. 1.0

7

the beginning of stream and end of stream (complete transmission in payload of this
pushpacket). The "payload" field contains an array of 16-bit samples.

E. When the transmission is complete and the Service User has no more data streams to
transmit, terminateTransmit is invoked. The Service Provider ends the transmission but the
connection is maintained by the Service Provider.

Figure 3. Incoming Connection Sequence Diagram

3.2 TRANSMIT AND RECEIVE SAMPLES.

*FDM

 : user : provider

2: pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType)

1: connectionInd(connectionIds : connectionsIdType, dataRate : short)

4: pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType)

3: initiateTransmit()

5: terminateTransmit()

JTRS HF ALE MAC API
ver. 1.0

8

4 SERVICE PRIMITIVES.

4.1 CONNECTIONCOMMANDS.

This interface (see Figure 4) provides methods associated with a HF ALE connection for the
Service Provider to invoke and the Service Provider to implement.

ModeTypes
voice
data

<<CORBAEnum>>

<<uses>>

connectionCommands

connectionReq(mode : ModeTypes) : void
initiateTransmit() : void
terminateTransmit() : void
disconnectReq() : void

<<Interface>>

Figure 4. connectionCommands

4.1.1 connectionReq.

Upon receiving a connectionReq, the ALE system attempts to perform a data handshake with
another station using the best available frequency. Once the two-way link is established, normal
voice or data communication can begin.

4.1.1.1 Synopsis.
connectionReq(mode : ModeTypes) : void

4.1.1.2 Parameters.
mode : ModeTypes

This parameter indicates which mode (i.e. data or voice) to invoke the connection State.

4.1.1.3 State.
No connection

JTRS HF ALE MAC API
ver. 1.0

9

4.1.1.4 New State.
Waiting for connection Confirm.

4.1.1.5 Response.
None.

4.1.1.6 Originator.
Service User

4.1.1.7 Errors/Exceptions.
None.

4.1.2 initiateTransmit.

When in a link, the HF ALE tells the physical layer to enter the transmit mode. If the link is a
voice link, HF ALE resets an internal link keep-alive timer.

4.1.2.1 Synopsis.
initiateTransmit() : void

4.1.2.2 Parameters.
None.

4.1.2.3 State.
Connection Established

4.1.2.4 New State.
Transmitting

4.1.2.5 Response.
None.

4.1.2.6 Originator.
Service User

4.1.2.7 Errors/Exceptions.
None.

4.1.3 terminateTransmit.

The HF ALE tells the physical layer to exit the transmit mode, and HF ALE returns to receive
monitoring for HF ALE transmissions.

4.1.3.1 Synopsis.
terminateTransmit() : void

4.1.3.2 Parameters.
None.

4.1.3.3 State.
Transmitting.

JTRS HF ALE MAC API
ver. 1.0

10

4.1.3.4 New State.
Receiving.

4.1.3.5 Response.
None.

4.1.3.6 Originator.
Service User.

4.1.3.7 Errors/Exceptions.
None.

4.1.4 disconnectReq.

The HF ALE transmits a link termination to the other station, then returns the system to receive
scanning and monitors for HF ALE transmissions.

4.1.4.1 Synopsis.
disconnectReq() : void

4.1.4.2 Parameters.
None.

4.1.4.3 State.
Connection Established.

4.1.4.4 New State.
No Connection .

4.1.4.5 Response.
None.

4.1.4.6 Originator.
Service User.

4.1.4.7 Errors/Exceptions.
None.

JTRS HF ALE MAC API
ver. 1.0

11

4.2 CONNECTIONSIGNALS.

This interface (Figure 5) provides methods for the Service Provider to notify the Service
Provider of asynchronous connection events. The Service Provider will invoke the methods and
the Service User will implement the methods.

IdType
(from Logical View)

<<CORBAStruct>>

connectionsIdType
<<CORBATypedef>>

connectionSignals

connectionConfirm(connectionIds : connectionsIdType, status : boolean, dataRate : short) : void
connectionInd(connectionIds : connectionsIdType, dataRate : short) : void
disconnectInd() : void

<<Interface>>

Figure 5. Connection Signals

4.2.1 connection Confirm.

This method is called when an HF ALE connectRequest operation is complete. If status is false,
the link attempt has failed. If status is true, connectionIds indicates the RF communication
channels that are available, and dataRate indicates the maximum data rate suggested by the link
quality.

4.2.1.1 Synopsis.

connectionConfirm(connectionIds : connectionsIdType, status : boolean, dataRate : short) : void

4.2.1.2 Parameters.
4.2.1.2.1 connectionIds.
connectionIds is sequence of octets. Each octet identifies a channel. "connctionId" may be
queried for its size which indicates the number of channels available on this connection. If the
connection fails, the size of this array shall be 0.

4.2.1.2.2 status
True when a connection was established, otherwise false.

JTRS HF ALE MAC API
ver. 1.0

12

4.2.1.2.3 dataRate
Indicates the maximum data rate recommended for each channel.

4.2.1.3 State.
No connection.

4.2.1.4 New State.
Connection established.

4.2.1.5 Response.
None.

4.2.1.6 Originator.
Service Provider

4.2.1.7 Errors/Exceptions.
None.

4.2.2 connectionInd.

This method is called when a received HF ALE link is complete. connectionIds indicates the RF
communication channels that are available, and dataRate indicates the maximum data rate
suggested by the link quality.

4.2.2.1 Synopsis.

connectionInd(connectionIds : connectionsIdType, dataRate : short) : void

4.2.2.2 Parameters.

4.2.2.2.1 connectionIds.
connectionIds is sequence of octets. Each octet identifies a channel. connectionIds may be
queried for its size which indicates the number of channels available on this connection. If the
connection fails the size of this array shall be 0.

4.2.2.2.2 dataRate.
Indicates the maximum data rate recommended for each channel in samples per second: a sample
is 16 bits.

4.2.2.3 State.
No connection.

4.2.2.4 New State.
Connection established.

4.2.2.5 Response.
None.

JTRS HF ALE MAC API
ver. 1.0

13

4.2.2.6 Originator.
Service Provider.

4.2.2.7 Errors/Exceptions.
None.

4.2.3 disconnectInd.

Indicates the HF ALE link with the other station has been terminated. HF ALE returns the
system to receive scanning and monitors for HF ALE transmissions.

4.2.3.1 Synopsis.
disconnectInd() : void

4.2.3.2 Parameters.
None.

4.2.3.3 State.
Connection Established.

4.2.3.4 New State.
No Connection.

4.2.3.5 Response.
None.

4.2.3.6 Originator.
Service Provider.

4.2.3.7 Errors/Exceptions.
None.

4.3 CONNECTION ESTABLISHED : TRANSMIT AND RECEIVE SAMPLES.

This interface provides methods for the Service User to send samples to the Service Provider to
be transmitted, and provides methods for the Service Provider to send received samples to the
Service User.

JTRS HF ALE MAC API
ver. 1.0

14

4.4 MACPUSHPACKET.

MacPushPacket
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>

IdType
(from Logical View)

<<CORBAStruct>>

StreamControlType

endOfStream : boolean
streamId : unsigned short
sequenceNum : octet

(from Logical View)

<<CORBAStruct>>

HfControlType
(from Logical View)

<<CORBAStruct>>

<<uses>>

PayloadType
<<CORBATypedef>>

<<uses>>

Figure 6. Packet BB

4.4.1 spaceAvailable.

This operation provides the ability to poll the Service Provider to determine the amount of space
available in samples (16-bit samples) in the queue for the given priority. The Service User will
poll the Server Provider to determine how much room is available in samples in the specified
priority. When the operation is invoked, the server will respond with the amount of available
space on the queue, in samples.

4.4.1.1 Synopsis.
spaceAvailable(priorityQueueID : in octet): return short

4.4.1.2 Parameters.
priorityQueueID : octet

This parameter indicates which PriorityQueue to check. The number of priority queues is set up
via SetNumOfPriorityQueues primitive. If SetNumOfPriorityQueues has not been called, the
default number of priority queues is 1.

JTRS HF ALE MAC API
ver. 1.0

15

4.4.1.3 State.
Any state.

4.4.1.4 New State.
Same state.

4.4.1.5 Response.
This operation responds with the amount of available space on the specified queue in samples.

4.4.1.6 Originator.
Service User.

4.4.1.7 Errors/Exceptions.
QUEUE_NOT_DEFINED

4.4.2 enableFlowControlSignals.

This operation is used to activate and deactivate the ‘water-mark’ signals. The default is false
(signals will not be generated).

4.4.2.1 Synopsis.

enableFlowControlSignals(enable : in boolean) : void

4.4.2.2 Parameters.
enable: boolean

false: The Service Provider will not generate signals to indicate the Lowwater and Highwater
queue conditions. It is up to the Service User to poll the Service Provider to insure the Service
Provider will not be starved or the queue will not overflow. The instantiating API should define
behavior upon starvation or queue overflow.

true: The Service Provider will signal the Lowwater and Highwater queue conditions, to the
Service User, when the Lowwater has been reached (queue near empty).

4.4.2.3 State.
NO_PROVIDER_WATERMARK_SIGNALS or PROVIDER_WATERMARK_SIGNALS

4.4.2.4 New State.
True -> PROVIDER_WATERMARK_SIGNALS

False-> NO_PROVIDER_WATERMARK_SIGNALS

4.4.2.5 Response.
None.

4.4.2.6 Originator.
Service User.

4.4.2.7 Errors/Exceptions.
None.

JTRS HF ALE MAC API
ver. 1.0

16

4.4.3 enableEmptySignal.

This operation is used to activate and deactivate the ‘empty’ signal. The signal will not be
generated when set to False.

4.4.3.1 Synopsis.

enableEmptySignal(enable : in boolean) : void

4.4.3.2 Parameters.
enable : boolean

false: The Service Provider will not generate a signal to indicate all queues are empty. It is up to
the Service User to poll the Service Provider to insure the Service Provider will not be starved.
The instantiating API should define behavior upon starvation.

true: The Service Provider will generate a signal to the Service User when the all queues are
empty.

4.4.3.3 State.
NO_PROVIDER_EMPTY_SIGNAL or PROVIDER_ EMPTY_SIGNAL

4.4.3.4 New State.
mode(on) ->PROVIDER_EMPTY_SIGNAL

mode(off)-> NO_PROVIDER_EMPTY_SIGNAL

4.4.3.5 Response.
None.

4.4.3.6 Originator.
Service User.

4.4.3.7 Errors/Exceptions.
None.

4.4.4 setNumOfPriorityQueues.

This operation is used by the Service User to inform the Service Provider how many priority
queues to provide.

4.4.4.1 Synopsis.

setNumOfPriorityQueues(numOfPriorities : in octet) : void

4.4.4.2 Parameters.
numOfPriorites : octet Specifies the number of priorities the Service Provider should process.
(e.g., If the Service Provider set the value to 10, the Service User would send packets to the
Service Provider with a priority of 0-9 (where 9 is the highest priority). Messages in priority 9
will be processed first by the Service Provider.)

4.4.4.3 State.
Any state.

JTRS HF ALE MAC API
ver. 1.0

17

4.4.4.4 New State.
Same state.

4.4.4.5 Response.
None.

4.4.4.6 Originator.
Service User.

4.4.4.7 Errors/Exceptions.
EXCEEDS_CAPACITY

4.4.5 getMaxPayLoadSize.

Returns the maxPayLoadSize in samples. This operation is auto-generated from the associated
attribute.

4.4.5.1 Synopsis.

getMaxPayLoadSize(void) : unsigned short

4.4.5.2 Parameters.
None.

4.4.5.3 State.
Any state.

4.4.5.4 New State.
Same state.

4.4.5.5 Response.
Returns the maxPayLoadSize in samples.

4.4.5.6 Originator.
Service User.

4.4.5.7 Errors/Exceptions.
None.

4.4.6 getMinPayLoadSize.

Returns the minPayLoadSize in samples. This operation is auto-generated from the associated
attribute.

4.4.6.1 Synopsis.

getMinPayLoadSize(void) : unsigned short

4.4.6.2 Parameters.
None.

4.4.6.3 State.
Any state.

JTRS HF ALE MAC API
ver. 1.0

18

4.4.6.4 New State.
Same state.

4.4.6.5 Response.
This operation returns the minPayLoadSize in samples.

4.4.6.6 Originator.
Service User.

4.4.6.7 Errors/Exceptions.
None.

4.4.7 pushPacket.

"pushPacket" provides the ability of pushing data packets from the Service User to a Service
Provider and from the Service Provider to the Service User. A packet is made up of two parts
control and payload. The payload is queued according to the priority and is processed according
to the information specified in control parameter.

4.4.7.1 Synopsis.

pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType) : void

4.4.7.2 Parameters.
priority: octet The priority queue to put the control and associated payload in. (See
setNumOfPriorityQueues)

control: HfControlType

payload: sequence of short;

4.4.7.3 State.
connected

4.4.7.4 New State.
connected

4.4.7.5 Response.
None.

4.4.7.6 Originator.
Service User or Service Provider.

4.4.7.7 Errors/Exceptions.
None.

JTRS HF ALE MAC API
ver. 1.0

19

4.5 SIGNALS BB.

PacketSignals

signalHighWatermark(priorityQueueID : in octet) : void
signalLowWaterMark(priorityQueueID : in octet) : void
signalEmpty() : void

<<Interface>>

Figure 7. Signal BB

4.5.1 signalHighWatermark.

signalHighWaterMark provides the ability to signal the Service User when a queue has reached
the high water mark: the queue is full for the specified priority.

4.5.1.1 Synopsis.

signalHighWatermark(priorityQueueID : in octet) : void

4.5.1.2 Parameters.
priorityQueueID : octet indicates the queue priority which has reached the high water mark. (See
setNumOfPriorityQueues).

4.5.1.3 State.
Any state.

4.5.1.4 New State.
Same state.

4.5.1.5 Originator.
Service Provider.

4.5.1.6 Errors/Exceptions.
None.

4.5.2 signalLowWatermark.

signalLowWaterMark provides the ability to signal the service user when a queue has reached
the low water mark: the queue is near empty for the specified priority.

4.5.2.1 Synopsis.

signalLowWatermark(priorityQueueID : in octet) : void

4.5.2.2 Parameters.
priorityQueueID : octet indicates the queue priority which has reached the low water mark. (See
setNumOfPriorityQueues).

JTRS HF ALE MAC API
ver. 1.0

20

4.5.2.3 State.
Any state.

4.5.2.4 New State.
Same state.

4.5.2.5 Originator.
Service Provider.

4.5.2.6 Errors/Exceptions.
None.

4.5.3 signal Empty.

signalEmpty provides the ability to signal the Service User when all priority queues are empty.
(See setNumOfPriorityQueues).

4.5.3.1 Synopsis.

signalEmpty(void) : void

4.5.3.2 Parameters.
None.

4.5.3.3 State.
Any state.

4.5.3.4 New State.
Same state.

4.5.3.5 Originator.
Service Provider.

4.5.3.6 Errors/Exceptions.
None.

4.6 COMMON STRUCTURES

The follow structures are used to create a Control_Type.

4.6.1 Stream Control Structure.

Stream control structure is used to control data groups sent between Service User and Service
Provider.

JTRS HF ALE MAC API
ver. 1.0

21

StreamControlType

endOfStream : boolean
streamID : unsigned short
sequenceNum : octet

<<CORBAStruct>>

Figure 8. Stream Control

Service Provider :
StreamControlType

Service User :
StreamControlType

1: stream_ID
=100,SequenceNum=0,endOfStream =

false

2: stream_ID
=100,SequenceNum=1,endOfStream = True

First Packet in a
stream

Last Packet in a
stream

Figure 9. Stream Control Sequence Diagram

4.6.1.1 endOfStream.
Indicates last group of symbols for this hop: end of stream.

4.6.1.2 steamId.
Identifies the groups of symbols to be transmitted or received in one hop.

4.6.1.3 sequenceNum.
Sequence number of the group of symbols within the stream sequence. The waveform
application sets this value to zero at the start of stream. If value is set to zero, it indicates
beginning of stream.

JTRS HF ALE MAC API
ver. 1.0

22

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.

Table 2. High Water and Low Water and Empty On

Current
State

Logical
Event

Condition Action Next State

Queue
normal

PushPacket Pushpacket does not
cause queue to reach
high water mark for the
specified priority.

queue packet Queue normal

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet
signalHighWatermark.

Queue at high
water mark

Pushpacket has
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

 No state
change

packet
extracted
from queue

Packet extracted causes
low water mark to be
reached

signalLowWatermark Queue at low
water mark

Packet extracted causes
low water mark not to
be reached

Queue normal

Packet extracted causes
all queues to be empty.

signalEmpty. Queue empty

Queue at
low water

PushPacket Pushpacket does not
cause the queue to
exceed the low water
mark for the specified
priority.

queue packet Queue at low
water

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet
signalHighWatermark

Queue at high
water mark

Pushpacket causes the
queue to exceed the low
water mark for the
specified priority but less
than the high water

queue packet Queue normal

JTRS HF ALE MAC API
ver. 1.0

23

mark.

Pushpacket has a
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
all queues to be empty

signalEmpty Queue empty

Packet extracted does
not causes all queues to
be empty

Queue at low
water

Queue at
high water

PushPacket *Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
low water mark to be
reached

signalLowWatermark Queue at low
water mark

Packet extracted causes
all queues to be empty

signalEmpty Queue empty

Packet extracted causes
the specified queue to
be less than high water
and greater than low
water

Queue normal

Queue is still greater
than or equal to high
water mark

Queue at
high water

Queue
empty

PushPacket Pushpacket causes the
queue to be greater than
the low water mark for
the specified priority but
less than the high water
mark

queue packet Queue normal

Pushpacket causes the
queue to equal the low
water mark for the
specified priority

signalLowWatermark Queue at low
water mark

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet
signalHighWatermark

Queue at high
water mark

JTRS HF ALE MAC API
ver. 1.0

24

Pushpacket has a
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state.

attempt to
extract

packet from
queue

. *Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state.

JTRS HF ALE MAC API
ver. 1.0

25

Table 3. High Water and Low Water Off and Empty On

Current
State

Logical
Event

Condition Action Next State

Queue
normal

PushPacket Pushpacket does not
cause queue to reach
high water mark for the
specified priority

queue packet Queue normal

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet Queue at high
water mark

Pushpacket has
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
low water mark to be
reached

Queue at low
water mark

Packet extracted causes
low water mark not to
be reached

Queue normal

Packet extracted causes
all queues to be empty

signalEmpty. Queue empty

Queue at
low water.

PushPacket Pushpacket does not
cause the queue to
exceed the low water
mark for the specified
priority

queue packet Queue at low
water

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet Queue at high
water mark

Pushpacket causes the
queue to exceed the low
water mark for the
specified priority but less
than the high water
mark

queue packet Queue normal

JTRS HF ALE MAC API
ver. 1.0

26

Pushpacket has a
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
all queues to be empty

signalEmpty. Queue empty

Packet extracted does
not causes all queues to
be empty

Queue at low
water

Queue at
high water

PushPacket *Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
low water mark to be
reached

Queue at low
water mark

Packet extracted causes
all queues to be empty.

signalEmpty. Queue empty

Packet extracted causes
the specified queue to
be less than high water
and greater than low
water

Queue normal

Queue is still greater
than or equal to high
water mark

Queue at
high water

Queue
empty

PushPacket Pushpacket causes the
queue to be greater than
the low water mark for
the specified priority but
less than the high water
mark

queue packet Queue normal

Pushpacket causes the
queue to equal the low
water mark for the
specified priority

Queue at low
water mark

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet Queue at high
water mark

Pushpacket has a
Payload larger than can

*Attempt to put in next
lower queue else

Same state

JTRS HF ALE MAC API
ver. 1.0

27

be put into the queue raise exception
PAYLOAD_TO_BIG

attempt to
extract

packet from
queue

. Stop Transmission Same state

Table 4. High Water and Low Water and Empty Off

Current
State

Logical
Event

Condition Action Next State

Queue
normal

PushPacket Pushpacket does not
cause queue to reach
high water mark for the
specified priority

queue packet Queue normal

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet Queue at high
water mark

Pushpacket has
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state.

packet
extracted
from queue

Packet extracted causes
low water mark to be
reached

Queue at low
water mark

Packet extracted causes
low water mark not to
be reached

Queue normal

Packet extracted causes
all queues to be empty

Queue empty

Queue at
low water

PushPacket Pushpacket does not
cause the queue to
exceed the low water
mark for the specified
priority

queue packet Queue at low
water

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the

queue packet Queue at high
water mark

JTRS HF ALE MAC API
ver. 1.0

28

Payload

Pushpacket causes the
queue to exceed the low
water mark for the
specified priority but less
than the high water
mark

queue packet Queue normal

Pushpacket has a
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
all queues to be empty

Queue empty

Packet extracted does
not causes all queues to
be empty

Queue at low
water

Queue at
high water

PushPacket *Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

packet
extracted
from queue

Packet extracted causes
low water mark to be
reached

Queue at low
water mark

Packet extracted causes
all queues to be empty

Queue empty

Packet extracted causes
the specified queue to
be less than high water
and greater than low
water

Queue normal

Queue is still greater
than or equal to high
water mark

Queue at
high water

Queue
empty

PushPacket Pushpacket causes the
queue to be greater than
the low water mark for
the specified priority but
less than the high water
mark

queue packet Queue normal

Pushpacket causes the
queue to equal the low
water mark for the
specified priority

Queue at low
water mark

JTRS HF ALE MAC API
ver. 1.0

29

Pushpacket causes
queue to reach high
water mark for the
specified priority and
there is room in the
queue to put the
Payload

queue packet Queue at high
water mark

Pushpacket has a
Payload larger than can
be put into the queue

*Attempt to put in next
lower queue else
raise exception
PAYLOAD_TO_BIG

Same state

attempt to
extract

packet from
queue

. Stop transmission Same state

JTRS HF ALE MAC API
ver. 1.0

30

6 PRECEDENCE OF SERVICE PRIMITIVES.

This section is intentionally blank.

7 SERVICE USER GUIDELINES.

This section is intentionally blank.

8 SERVICE PROVIDER-SPECIFIC INFORMATION.

Not applicable.

9 IDL.

The HF ALE MAC interface design depicted in IDL source code is shown in the following
subsections.

9.1 IDL FOR ALE CONFIGURE.
//Source file: C:/Projects/JTRS/APIs/SCAWorkingGroup/Building_Blocks/HF-
ALE/Mac_API/NRTidl/ALEConfigure.idl

#ifndef __ALECONFIGURE_DEFINED
#define __ALECONFIGURE_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "ALEResponses.idl"

struct lqaParametersType {
callAddressType lqaCallAddress;
unsigned frequencyInHz;
unsigned short lqaTimeInSeconds;
unsigned short rxLQABER;
unsigned short rxLQASINAD;
unsigned short txLQABER;
unsigned short txLQASINAD;

};

typedef string <15> callAddressType;

struct systemParametersType {
boolean AllCall;
boolean AMDInACK;
boolean callAlert;
boolean commandLQA;
boolean lbcEnable;
boolean terminateLinkTransmission;
unsigned short keepAliveTxIntervalInSecs;
unsigned short listenBeforeCallTimeInMs;
unsigned short lqaDegradeIntervalInMinutes;
unsigned short networkTuneTimeInSecs;
unsigned short returnToScanTimeInSecs;

JTRS HF ALE MAC API
ver. 1.0

31

unsigned short minScanDwellTimeInMs;
unsigned short staticModeCallSoundDurationInSecs;

};

struct starGroupParametersType {
unsigned short index;
any groupNameCallAddressType;
unsigned short numberOfMembers;
sequence <callAddressType,8> membersList;

};

struct scanListParametersType {
unsigned scanListNumber;
boolean defaultToQuickALE;
boolean otherCallProtocalls;
unsigned short callDurationInseconds;
boolean enableSounding;
unsigned short soundDurationInseconds;
unsigned short numberOfScanChannels;
sequence <unsigned,20> channelsToScan;

};

struct starNetParametersType {
boolean respondentsActive;
boolean fixedLengthAddress;
unsigned short numberOfRespondents;
sequence <callAddressType, 24> respondentList;
unsigned short index;
callAddressType starNetName;
bolean useScanLists;
unsigned short scanLIstIndex;

};

struct channelParametersType {
unsigned short channelNumber;
unsigned txFreqInHz;
emissionModeType txEmissionMode;
unsigend short txPowerLevel;
unsigned rxFreqInHz;
emissionModeType rxEmissionMode;
unsigned short soundingIntervalinMinutes;
boolean rxOnly;
boolean enableSounding;

};

enum callProtocallType {
Default,
StandardALE,
QuickALE

};

struct addressParemetersType {
unsigned short addressIndex;
callAddressType otherAddress;
unsigned short scanListIndex;
unsigned short remoteStationTuneTimeInSeconds;
callProtocolType callProtocol;

JTRS HF ALE MAC API
ver. 1.0

32

};

enum emissionModeType {
USB,
LSB,
UUSB,
LLSB

};

enum scanListModeType {
None,
AllLists,
SelectedLIst

};

struct selfAddressParametersType {
boolean useNets;
unsigned short netAddressIndex;
boolean netResponseActive;
unsigned short index;
callAddressType selfAddress;
scanListType scanListMode;
unsigned short scanListIndex;

};

interface ConfigureALE {
/*
@roseuid 3A131CC80078 */
boolean configureChannel (

in channelParametersType ChannelParameters
);

/*
@roseuid 3A14435C0156 */
channelParametersType ListChannel (

in unsigned short ChannelNumber
);

/*
@roseuid 3A131D2B00CB */
boolean configureScanList (

in scanListParametersType ScanListParameters
);

/*
@roseuid 3A131D6F023B */
boolean configureOtherAddress (

in addressParametersType AddressParameters
);

/*
@roseuid 3A131E4C01A3 */
boolean configureSelfAddress (

in selfAddressParametersType SelfAddressParameters
);

/*

JTRS HF ALE MAC API
ver. 1.0

33

@roseuid 3A131E830300 */
boolean configureStarGroup (

in starGroupParametersType StarGroupParameters
);

/*
@roseuid 3A131EAA01DA */
boolean configureStarNet (

in starNetParametersType StartNetParameters
);

/*
@roseuid 3A131EFD0071 */
boolean configureLQA (

in lqaParametersType LQAParameters
);

/*
@roseuid 3A14444803C2 */
boolean listKey (

in unsigned short keyNumber,
in lpLevelType1Type keyType
);

/*
@roseuid 3A131FD8036F */
boolean configureSystemParameters (

in systemParametersType SystemParameters
);

/*
@roseuid 3A14665200C1 */
boolean zeroizeData ();

};

#endif

9.2 IDL FOR ALE OPERATIONS.
//Source file: C:/Projects/JTRS/APIs/SCAWorkingGroup/Building_Blocks/HF-
ALE/Mac_API/NRTidl/ALEOperations.idl

#ifndef __ALEOPERATIONS_DEFINED
#define __ALEOPERATIONS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "ALEResponses.idl"

enum callTypeType {
Unknown,
individual,
Net,
All,

JTRS HF ALE MAC API
ver. 1.0

34

Any,
Group,
Sound,
None

};

struct qaListParametersType {
TimeType lqaTime;
unsigned FequencyInHz;
callAddressType lqaAddress;
unsigned short minimumLQAValue;
unsigned short commandNumber;

};

typedef string <15> callAddressType;

struct soundCommandParametersType {
boolean soundAll;
unsigned short channelToSound;
boolean soundImmediate;
unsigned short soundCommandNumber;

};

struct systemStatusResponseType {
systemModeType systemMode;
unsigned short scanIndex;
boolean Tx;
aleStateType alestate;
unsigned short channelNumber;
callTypeType callType;
callAddressType thierAddress;
emissionModeType txEmissionMode;
unsigned TxFrequencyInHz;
emissionModeType rxEmissionMode;
callAddressType lastAddress;
unsigned rxFrequencyInHz;
callAddressType myAddress;

};

enum systemModeType {
Standby,
Datafill,
ALEScan,
ALEPreset,
ALEManual,
Test

};

struct CallParametersType {
unsigned short callNumber;
callAddressType callAddress;
unsigned short scanListIndex;
boolean noLInkCommand;
boolean useAMD;
unsigned short amdCommand;
boolean lqaCommand;
callTypeType callType;

JTRS HF ALE MAC API
ver. 1.0

35

};

interface ALEOperations {
/*
@roseuid 3A14484D02D1 */
void SetSystemMode (

in unsigned short CommandID,
in systemModeType SystemMode,
in unsigned short Index
);

/*
@roseuid 3A1449FA0120 */
boolean setCallAddress (

in callAddressType address
);

/*
@roseuid 3A144A20023D */
boolean setScanList (

in unsigned short NumberOfScanLists,
in sequence <unsigned short ScanLIsts,
 any 20>
);

/*
@roseuid 3A144A5D0230 */
void call (

in callParametersType CallParameters
);

/*
@roseuid 3A144CA00084 */
void soundCommand (

in soundParametersType soundParameters
);

/*
@roseuid 3A144FA90096 */
void listQA (

in qaListParametersType QAListParameters
);

};

#endif

9.3 IDL FOR ALE RESPONSES.
//Source file: C:/Projects/JTRS/APIs/SCAWorkingGroup/Building_Blocks/HF-
ALE/Mac_API/NRTidl/ALEResponses.idl

#ifndef __ALERESPONSES_DEFINED
#define __ALERESPONSES_DEFINED

/* CmIdentification

JTRS HF ALE MAC API
ver. 1.0

36

 %X% %Q% %Z% %W% */

#include "ALEOperations.idl"

enum callTypeType {
Unknown,
individual,
Net,
Sound,
Group,
Any,
None,
All

};

typedef string <15> callAddressType;

enum aleStateType {
Answering,
CallFailed,
CallInProgress,
Linked,
Sounding,
CallFailedOnAll,
StoppedScanning,
Calling,
LIstening

};

enum sytemModeType {
Standby,
Test,
ALEManual,
ALEPreset,
ALEScan,
Datafill

};

struct CallEventResponseType {
callTypeType callType;
callAddressType ourAddress;
callAddressType thierAddress;
callAddressType linkedMasterAddress;
unsigned short channelNumber;
unsigend short channelRanking;
callEventType typeOfCallEvent;
boolean lastResponse;
unsigned short commandNumber;

};

enum emissionModeType {
USB,
LSB,
UUSB,
LLSB

};

JTRS HF ALE MAC API
ver. 1.0

37

struct systemStatusResponseType {
callTypeType callType;
callAddressType myAddress;
callAddressType lastAddress;
unsigned TxFrequencyInHz;
emissionModeType txEmissionMode;
unsigned rxFrequencyInHz;
emissionModeType rxEmissionMode;
boolean Tx;
callAddressType thierAddress;
unsigned short scanIndex;
unsigned short channelNumber;
systemModeType systemMode;
aleStateType alestate;

};

enum systemModeType {
Standby,
Test,
Datafill,
ALEScan,
ALEPreset,
ALEManual

};

interface ALEResponses {
/*
@roseuid 3A14528703D0 */
void callEventInfoResponse (

in callEventResponseParametersType CallEventResponseParameters
);

/*
@roseuid 3A14530000B3 */
void commandAckResponse (

in unsigned short CommandNumber,
in boolean Success
);

/*
@roseuid 3A14536101DF */
void systemModeResponse (

 unsigned short CommandNumber,
 systemModeType SystemMode,
 boolean SystemGo,
 boolean SystemOperational,
 boolean InhibitTx
);

/*
@roseuid 3A1454120111 */
void amdResponse (

in timeType TimeOfCommand,
 callAddressType Source,
 string<90> Message
);

JTRS HF ALE MAC API
ver. 1.0

38

/*
@roseuid 3A14547F01A4 */
void ReceivedRespondeesResponse (

 callAddressType RespondeeAddress
);

/*
@roseuid 3A1454F30273 */
void listLQAResponse (

 lqaResponseParametersType LQAResponseParameters
);

/*
@roseuid 3A146E6A00B6 */
void systemStatusResponse (

 unsigned short commandNumber,
 boolean astResponse
);

};

#endif

9.4 IDL FOR CONNECTION.
//Source file: C:/Projects/JTRS/APIs/SCAWorkingGroup/Building_Blocks/HF-
ALE/Mac_API/RTIDL/Connection.idl

#ifndef __CONNECTION_DEFINED
#define __CONNECTION_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "HF_Packet.idl"

struct IdType {
};

enum ModeTypes {
data,
voice

};

interface connectionCommands {
/*
@roseuid 39E738A60394 */
void connectionReq (

 ModeTypes mode
);

/*
@roseuid 39E742AB01BB */
void initiateTransmit ();

/*

JTRS HF ALE MAC API
ver. 1.0

39

@roseuid 39E742B60009 */
void terminateTransmit ();

/*
@roseuid 39E7454B024E */
void disconnectReq ();

};

typedef sequence <IdType> connectionsIdType;

interface connectionSignals {
/*
@roseuid 39E73A5E0152 */
void connectionConfirm (

 connectionsIdType connectionIds,
 boolean status,
 short dataRate
);

/*
@roseuid 39E741A503BD */
void connectionInd (

 connectionsIdType connectionIds,
 short dataRate
);

/*
@roseuid 39E7427500F5 */
void DisconnectInd ();

};

#endif

9.5 IDL FOR HF PACKET.
//Source file: C:/Projects/JTRS/APIs/SCAWorkingGroup/Building_Blocks/HF-
ALE/Mac_API/RTIDL/HF_Packet.idl

#ifndef __HF_PACKET_DEFINED
#define __HF_PACKET_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

struct IdType {
};

struct StreamControlType {
boolean endOfStream;
unsigned short streamId;
octet sequenceNum;

};

typedef sequence <short> PayloadType;

JTRS HF ALE MAC API
ver. 1.0

40

struct HfControlType {
};

interface MacPushPacket {
/* The maxPacketSize is a read only attribute set by the Packet Server

and the get operation reports back the maximum number of traffic units
allowed in one pushPacket call. */

attribute unsigned short maxPayloadSize;
attribute unsigned short minPayloadSize;

/* This operation is used to push Client data to the Server with a
Control element and a Payload element.

@roseuid 39E734B1021C */
void pushPacket (

 octet priority,
in HfControlType control,
in PayloadType payload
);

/* The operation returns the space available in the Servers queue(s) in
terms of the implementers defined Traffic Units.

@roseuid 39E734B10232 */
unsigned short spaceAvailable (

in octet priorityQueueID
);

/* This operation allows the client to turn the High Watermark Signal
ON and OFF.

@roseuid 39E734B10234 */
void enableFlowControlSignals (

in boolean enable
);

/* This operation allows the client to turn theEmpty Signal ON and OFF.
@roseuid 39E734B10239 */
void enableEmptySignal (

in boolean enable
);

/*
@roseuid 39E734B1023B */
void setNumOfPriorityQueues (

in octet numOfPriorities
);

};

#endif

9.6 IDL FOR HF API.
//Source file: C:/Projects/JTRS/APIs/SCAWorkingGroup/Building_Blocks/HF-
ALE/Mac_API/RTIDL/HFAPI.idl

JTRS HF ALE MAC API
ver. 1.0

41

#ifndef __HFAPI_DEFINED
#define __HFAPI_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "HF_Packet.idl"
#include "Connection.idl"

interface PacketSignals {
/* This operation is a call event back to the PacketAPI client

indicating that a queue has reach the high watermark. If priority or
multiple queues are being supported then the priorityQueueID indicates which
queue has reached the high watermark.

@roseuid 38F3442F01B8 */
oneway void signalHighWatermark (

in octet priorityQueueID
);

/* This operation is a call event back to the PacketAPI client
indicating that the queue has reach the low watermark. If priority or
multiple queues are being supported then this indicates that the sum total of
all the queues has reached the low watermark.

@roseuid 38F3446F025A */
oneway void signalLowWaterMark (

in octet priorityQueueID
);

/* This operation is a call event back to the PacketAPI client
indicating that the queue has emptied. If priority or multiple queues are
being supported then this indicates that the sum total of all the queues has
reached zero.

@roseuid 38FE26CF02FA */
oneway void signalEmpty ();

};

interface HfAleRealTimeAPI : MacPushPacket, connectionCommands {
};

#endif

JTRS HF ALE MAC API
ver. 1.0

42

10 UML.

This appendix includes the UML class diagrams for the Service Definition. The purpose for
including these diagrams is to show the relationship between all the elements of the HF ALE
MAC API Service Definition.

connectionCommands

connectionReq(mode : ModeTypes) : void
initiateTransmit() : void
terminateTransmit() : void
disconnectReq() : void

<<Interface>>

ModeTypes
voice
data

<<CORBAEnum>>

<<uses>>

connectionSignals

connectionConfirm(connectionIds : connectionsIdType, status : boolean, dataRate : short) : void
connectionInd(connectionIds : connectionsIdType, dataRate : short) : void
DisconnectInd() : void

<<Interface>>

IdType
(from Logical View)

<<CORBAStruct>>

connectionsIdType
<<CORBATypedef>>

<<uses>>

<<uses>>

JTRS HF ALE MAC API
ver. 1.0

43

MacPushPacket
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : octet, control : in HfControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>

IdType
(from Logical View)

<<CORBAStruct>>

StreamControlType

endOfStream : boolean
streamId : unsigned short
sequenceNum : octet

(from Logical View)

<<CORBAStruct>>

HfControlType
(from Logical View)

<<CORBAStruct>>

<<uses>>

PayloadType
<<CORBATypedef>>

<<uses>>

JTRS HF ALE MAC API
ver. 1.0

44

HfAleRealTimeAPI
<<Interface>>

MacPushPacket
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket()
spaceAvailable()
enableFlowControlSignals()
enableEmptySignal()
setNumOfPriorityQueues()

<<Interface>>

connectionSignals

connectionConfirm()
connectionInd()
DisconnectInd()

<<Interface>>

connectionCommands

connectionReq()
initiateTransmit()
terminateTransmit()
disconnectReq()

<<Interface>>

PacketSignals

signalHighWatermark(priorityQueueID : in octet) : void
signalLowWaterMark(priorityQueueID : in octet) : void
signalEmpty() : void

<<Interface>>

